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M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
(Received 25 January 1995)

Two-state Brownian motion is considered. One state is subjected to white noise while the other one is
exposed to dichotomous noise. Such motion is described by a set of three connected Fokker-Planck
equations. The switch probability density functions between the states are assumed to have a single ex-
ponential form. The equations for the partial moments of the particle velocity are solved recursively.
The first moment vanishes as — c while the second moment defines the effective diffusion coefficient.
Estimates have been made of the Brownian motion near the critical point.
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I. INTRODUCTION

The motion of a particle suspended in a fluctuating
medium is an interesting stochastic problem which has
great practical importance. It is sufficient to mention
near-critical systems and turbulent fluids as fluctuating
media with many applications (supercritical extraction,
fuel injection, cloud formation, etc.). Not only are the
properties of the Brownian motion in such media
changed compared with those in homogeneous media,
but the source of the stochasticity is quite different.

The equation of motion of a Brownian particle in a
homogeneous medium has the well-known Langevin form

%’ti=—nu+f<t>, (1)
where u is a particle velocity, 7 is the friction constant di-
vided by the mass of the particle, and f(¢) is the random
force.

It is assumed in (1) that the influence of the surround-
ing medium on the Brownian particle consists of two
parts: the systematic force —mnu, which is defined by
Stokes law with the characteristic time 7, equal to 1~}
and the random force f(t). It is also assumed that f(z)
changes very rapidly, so that its characteristic time 7, is
smaller than 7, and than all other times which may ap-
pear in the problem. The common assumption is that
f(t) is white noise (i.e., 7,=0) with whose mean is zero
and whose correlation function has the form

(f()f(t'))y=2T8(t—1t"). 2)

Equation (2) assures the Markovian nature of the
Brownian motion: at the instant of collision the Browni-
an particle “forgets” the previous collision. Viscosity
hinders Brownian motion and near equilibrium the
fluctuation-dissipation theorem applies, giving

T=nkT, D=kT/y . 3)

The latter expression is the well-known Einstein rela-
tion [1]. The character of Brownian motion can be quite
different in an inhomogeneous medium. The latter may
be visualized as a system which consists of clusters with
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uniform physical properties within each cluster. If the
typical size of a cluster is similar to that of the Brownian
particle, then all the particles are of similar size and they
undergo random collisions with a mean free time
T=~T7;~7, According to molecular-kinetic theory both D
and 7 are proportional to 7, and D =1, in contrast to the
Einstein relation (3). Finally, if the size of the Brownian
particle becomes smaller than the size of a cluster, the sit-
uation changes again and in particular, the Brownian
particle may have a prolonged interaction time with clus-
ters of the bathing medium (i.e., 7,> 7). The question
then arises of what will be the relation between D and 7
in this situation.

II. MODEL

To construct our model we assume that the clusters are
not rigid but soft, i.e., they are able to capture the
Brownian particle which, therefore, will sometimes be
moving inside a cluster. If the velocity of the particle is
not too great one can assume that the drag force acting
upon the particle inside a cluster varies linearly with ve-
locity with respect to that of the cluster, i.e.,

LY — w—u), )

where w is the velocity of the cluster. Equation (4) con-
tains the natural assumption of equal viscosities for the
motions inside and outside of the cluster.

We now consider the situation for which the clusters
are not only soft but they also randomly appear and
disappear. This occurs for clusters of the size of the
correlation length near the critical points and of the size
of large eddies in a turbulent fluid. The cluster velocity w
in (4) is, therefore, a random variable. Hence, the veloci-
ty of the Brownian particle at the instant of cluster decay
is also a random variable.

Although the source of stochasticity is different in Egs.
(1) and (4), the force acting upon the particle in Eq. (4)
consists, as in Eq. (1), of a systematic part —nu and a
random part nw. For the near-critical conditions in
liquids and for homogeneous, isotropic, and stationary
turbulences, the random variable w has a Gaussian spec-
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trum with the zero mean and a ‘“‘color” [rather than the
white noise in Eq. (2)] correlation function

(w(thw(t'))=a%exp{—2Blt—1t'|} . (5)

White noise (2) can be obtained from (5) by taking the
limits
a— ©,B—w, a’/B=const=2D . (6)

Hence, the following picture of the Brownian motion
holds when one is close to a critical point of liquids or the
turbulence is very developed so that the size of the
Brownian particle is smaller than the correlation length
or the smallest size of turbulence eddies. The Brownian
particle is captured by a cluster, spends some time inside,
moving according to (4), then is released when the cluster
decays, moves among the single molecules according to
(1), then captured again by another cluster, etc.

Our problem then becomes a special case of the general
theory of the two-state random walk [2] in which a parti-
cle can be in one of two states for a random period of
time, with each of the states having different dynamics
and a different switch density for a jump to the second
state. These two states can be quite different. Let us con-
sider a few examples.

1. In continuous-time random walk theory [3], which
has been applied to the transport properties of disordered
solids, a random walker is either at rest or in free motion.

2. Collisions of finite duration and the free motion be-
tween collisions have been considered for the study of
molecular rotation [4].

3. The model in which two states correspond to
motion in the positive or negative directions has been
used for the analysis of chromotographic processes [5].

4. Thermal escape from a linear potential well with a
barrier height which switches at random between two
values [6]. The same phenomenon of resonant activation
has been studied for the simpler model of random jumps
between two free states with finite lifetimes [7].

5. Concept of the mean first-passage time which has
many applications in physics, chemistry, and biology has
been extended to the two-states dynamics for different
boundary conditions [8].

Our case is slightly more complicated than those con-
sidered above since the random noise in (4) is not white
noise, which would bring us to a three-state rather than
to a two-state system.

The simplest realization of color noise (5) is so-called
dichotomous noise, which alternatively takes on the
values +na with an equal exponential switch probability
density function for the two states

Y(t)=Bexp(—Pt), (7

where B! is the average time between switches. There-
fore, the dynamic equation (4) is now replaced by the fol-
lowing two equations:

du

Z=—nu +mna , (8)
%=—nu—na , (9)

where, according to Eq. (5), a defines the strength of the
noise.

The motion inside a cluster is described by Egs. (8) and
(9) with a random switching between these two states, so
that the average time between switches is equal to 87 1.
In addition, the Brownian particle switches from the
motion inside a cluster to the motion outside a cluster
among single molecules described by Eq. (1). We assume
that this random switching is characterized by the ex-
ponential switch probability similar to (7),

Y (t)=a;exp(—a;t), i=1,2. (10)

The characteristic time @; ! has a simple physical
meaning. Since f o tY(tdt=a; 1, ay! defines the aver-
age time in state 1 outside a cluster whose dynamics is de-
scribed by Eq. (1) and a; ! defines the average time in
state 2 inside a cluster whose dynamics are given by Eqgs.
(8) and (9).

We shall work with the Fokker-Planck equations cor-
responding to tke Langevin equations (1), (8), and (9) [1].
Since the v;(¢), i =1,2,3, entering these equations are ran-
dom variables which depend both on the state and on the
time, their properties can be described by three probabili-
ty densities p;(v,¢), where the probability that
v=v;(t)<v-+dv is equal to p;(v,f)dv. In general, the
pi(v,t) must be calculated as the solution of an integral
equation. Choosing the switch probability densities 1,
¥y, and ¥, to have the form shown in Egs. (7) and (10)
simplifies our analysis to the Markovian form and
reduces the integral equations to differential equations. If
we suppose that the system is in state { =1, then (10) im-
plies that the probability that it makes a transition to
state i =2 (or i =3) is equal to a,dt. Analogously, the
system in state i =2 (i =3) has the probability a,dt to
make a transition to state i =1 and the probability Bdt
for the jump to state i =3 (i =2). The three equations for
the p;(v,t) are derived by enumerating the ways in which
these functions change as functions of time, taking into
account the possibilities of spontaneous transitions whose
kinetics are embodied in Egs. (1), (8), and (9). The ap-
propriate procedure is similar to that used to derive a
diffusion equation from the Langevin equation, and for
the case of two states, was considered in detail in Ref. [9].
We find that the coupled equations for the p;(v,t) are

apl d Zazpl

?=n$(vp1)+Dn ) +ap,+p3)—2ap,,
(11)

9, d 9p,

ar “ﬂdv(vpz) amn 3 tayp,—ap,tB(p;—p,),
(12)

aPa_ (i) ap;

a5, ) a7 ~tap —awps +Bp,—ps)
(13)

Notice that the p;(v,t) are the marginal probabilities of
the partial velocity
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pi= f_:P,-(x,v,t)dx (14)

as distinguished from the full distribution functions P;
which depend on the coordinates of the Brownian parti-

cle as well.

III. FIRST TWO MOMENTS

The quantities of primary interest are the moments of
the particle velocity. Define the partial moments u, ;(¢)
by

i = f_:v”pi(v,t)dv . (15)

By multiplying Egs. (11)-(13) by v” and integrating by
parts one finds the following equations for u,, ;:

ag:’l =—nnu,;+tn(n _1)D"72ﬂn—2,1
ta(pn st sy 2001, , (16)

a‘;:’z =—nnu,tnanu, |, tap,,
=By 3~y ) amn

%=—nwn,3~nawn~1,3+az#n,x
—ay 3t By s~ 3) - (18)

While it is easy to solve these equations recursively as a
function of time, the interesting features are contained in
the asymptotic values which are obtained by setting the
derivatives equal to zero. Equations (16)—(18) for n =0
yield

a, @

= =ppi=———— . 19
Ho,1 a,+2a, Ho,2= Ho,3 a,+2a, (19)

Equations (19) have a clear physical meaning. Since
the p;(v,?) are defined as probability densities, the partial
moments of zeroth order satisfy the condition
Mo,1 1o 2t 103 =1

Equations (16)—-(18) for n =1 result in the following
forms for the first partial moments:

B1,1=0,
b (20)

_ _ a7’a2
b s ¥ 2B) (a, +2a,)

so that the asymptotic value of the first moment satisfies

Bi=py eyt 3=0. 21

Finally, the second partial moments follow readily from
Egs. (16)-(18) with n =2:

_ na(a,+29)D
Fo = a F2a,) (@ + 2a,+27)

2a,a,ma?

22
+ (a;+2a,)(a,+28+n)a,+2a,+27) ’ @2

o a,a,mD
H2,2= M3~ (a;+2a,+27)a;+2a,)

N 2nay(n+ay)a?
(a;+2a,(a;+2B+)Na;+2a,+279)
(23)

From Eqgs. (22) and (23) one finds for the asymptotic
value of the second moment p,=u, 1+, ,+1, 3

2na,a?
(a;+2a,(a,+2B+7)

_ ma,D
Ha a, + 2a2

(24)
Another way to write (24) is by defining an effective
diffusion coefficient D 4 by p, =D 47, yielding

a,D 2a,a?
D= + .
T +2a, (a;+2a,)a;+2B+7)

(25)

The first term in (24) and (25) describes the contribu-
tion of the state subjected to white noise while the second
term is determined by the state exposed to dichotomous
noise. It is instructive to examine some limiting cases of
(25) to see how they correspond with previously known
results.

1. The limit a@;— o corresponds to a situation in
which the particle stays mainly in the Brownian state (1),
and if it leaves this state, it returns almost immediately.
Then, as it follows from (25),

Dg=D . (26)

2. For the similar limit a,— o, only states (8) and (9)
are important and

2

—_ ma®
T 27)

3. If the transitions between state (1) and states (8) and

(9) are symmetric, i.e., a; =a,=a, then (25) reduces to
D 2a?
D=7+ 3(n+a+2B8) @8

4. The limits @ — o and B— o« with a2/B=2D corre-
spond, according to (6), to the transition from dichoto-
mous to white noise. Then, (28) reduces to (26), which is
the expected result since both states become identical.

5. The limit a—0 means that there is no interaction
between the states. Then they make additive contribu-
tions to the second moment u, and to D. The known
results [10] for D and a,/(n+2B) [with the numerical
factors 1/3 and 2/3 connected with initial conditions
(19)] follow from (28).

IV. CONCLUSIONS

Extensive studies of Brownian motion near instability
points have been made in the 1970s. The theoretical
analyses were concerned with the critical points of pure
substances [11-17] and binary mixtures [18,19] as well
as with the convective instability [20]. Some semiquanti-
tative experiments have been performed near the critical
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points of pure substances [21] and binary mixtures [22].
However, only one set of hydrodynamic equations (with
different types of corrections—compressibility, spatial,
and temporal dispersion, non-Boussinesq approximation,
etc.) was a basis of all theoretical analysis while we con-
sidered here the two-state systems.

Indeed, we consider the motion of a Brownian particle
which is able to be in one of two states with random
switching between them. The first is the usual Brownian
state exposed to white Gaussian noise while the second
state is subjected to color noise which is chosen to be di-
chotomous noise. The latter is described by two
(sub)states with random switching between them. The
simplest (Markovian) case was considered in which the
both switching probability density functions have a sim-
ple exponential form.

It is found that the asymptotic (t— oo) first moment of
the particle velocity vanishes, and the second moment is
given by the simple equation (24). The effective diffusion
coeflicient of the Brownian particle (25)-(28) is a com-
bination of the diffusion coefficient D and the viscosity 7
of the medium as well as of the characteristic switching
times a; !, @; !, and gL

Our results can be applied to the quantitative analysis
of the Brownian motion near the critical point. The gen-
eral behavior depends on the relation between the size of
the Brownian particle and the correlation length which
defines the typical size of a cluster. The latter increases
when the critical point is approached. If the size of the
Brownian particle is so small that in the immediate vicin-
ity of the critical point it becomes smaller than the corre-
lation length, the effects considered above may become
important. Then, clusters will occupy a progressively

larger part of the volume of a system as the critical point
is approached, and the effective diffusion coefficient will
change from (26) to (27). One can estimate the depen-
dence of D given by (27) on the vicinity to the critical
point. If the velocity distribution of clusters is Maxwelli-
an, then a?~kT /m ~R 3, where m and R are the mass
and the size of a cluster, respectively. The characteristic
times ! and B! will be proportional to R divided by
some adiabatic velocity c¢. The correlation length R is
proportional to [(T—T,)/T,]”" with v=0.67 while ¢
and 7) have only a weak singularity near the critical point.
Therefore, if the situation described above will be
achieved in a real experiment, the diffusion coefficient of
the Brownian particle will show a drastic decrease very
close to the critical point, D~ [(T—T,)/T.]"?

Brownian motion in the vicinity of the critical point
was studied experimentally by Martizen and collabora-
tors almost 30 years ago [21]. They found that the
diffusion coefficient decreased fourfold over the interval
0.5-0.2 K near the critical point, which agrees qualita-
tively with our estimates, namely [D(T—T,=0.5
K))/[D(T—T,=0.2 K)]=[0.5/0.2]"3*=~3.5. However,
the more quantitative experiments are needed. Another
interesting possibility would be an application of the idea
presented in this work to systems of colloidal particles
especially those which covered by weakly absorbed
monolayers.
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